
Constituency
Grammars and
Constituency

Parsing
Natalie Parde
UIC CS 421

POS tags are one
way to formalize
language structure.

• Constituency grammars are another!
• Constituency grammars are:

• A set of rules that describe how
a language can be structured

• A lexicon that defines the words
and symbols that belong to the
language

Natalie Parde - UIC CS 421 2

Constituency
Grammars

• Break sentences into hierarchical parts
• Provide the necessary structure to answer important

questions:
• What are the constituents (groups of words that

behave as a single unit or phrase) in this
sentence?

• What are the grammatical relations between
these constituents?

• Which words are dependent upon one another?
• Although most approaches we’ve seen model

sentences as sequences, formal grammars model
sentences as recursive generating processes

• Usually, this is done using a tree structure

Natalie Parde - UIC CS 421 3

It’s all about finding the right balance!

Natalie Parde - UIC CS 421 4

Overgeneration: English:
Undergeneration:

I love my NLP class so much
that I don’t even care about it
being in early morning!

Did you get the email that
that guy from class said he
would forward to you?

Well, that just happened.

I love my class!

Did you get his email?

What happened?

Love NLP class my
so much that don’t
care about being it
early morning in!

Did get the you email
guy that that from
class said he forward
to you would?

Well, there just
happened.

This
Week’s
Topics

Natalie Parde - UIC CS 421 5

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

This
Week’s
Topics

Natalie Parde - UIC CS 421 6

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

Grammar Formalisms vs. Specific Grammars

7

N
atalie Parde - U

IC
 C

S 421

• Grammar Formalisms: A precise way to define and describe the structure of
independent sentences.

• There are many different grammar formalisms (you can learn much more about
these in linguistics courses!)

• Specific Grammars: Implementations (according a specific formalism) for a
particular language

• English, Arabic, Mandarin, or Hindi
• Grammar Formalisms : Specific Grammars :: Programming Languages : Programs
• In general, our specific grammars are close but imperfect ways to formalize a

language
• For example: There are an infinite number of possible English sentences, but

our specific grammar for English needs to be finite

Basic English Sentence Structure

Natalie Parde - UIC CS 421 8

Natalie likes conferences

Noun (Subject) Verb (Head) Noun (Object)

There are many ways to
represent a sentence!
As a dependency graph:

Natalie Parde - UIC CS 421 9

Natalie likes conferences

Subject Object likes

Natalie conferences

Subject Object

There are many ways to
represent a sentence!
As a finite state automaton:

Natalie Parde - UIC CS 421 10

Noun
(Subject)

Verb
(Head)

Noun
(Object)

There are many ways to
represent a sentence!
As a hidden Markov model:

Natalie Parde - UIC CS 421 11

Noun
(Subject)

Verb
(Head)

Noun
(Object)

Natalie, Usman,
Shahla, Eli,

Pardis, Ankit,
Mohammad,

Souvik,
Gyeongeun

likes, hates,
loves, enjoys,
fears, adores

conferences,
workshops,

coffee, papers

Different types of words accept different types of
arguments.

12

N
atalie Parde - U

IC
 C

S 421

• Subcategorization: Syntactic constraints on the set of
arguments that a group of words will accept.

• Intransitive verbs accept only subjects
• Sleep, arrive

• Transitive verbs accept a subject and a direct object
• Eat, drink

• Ditransitive verbs accept a subject, a direct object,
and an indirect object

• Give, make
• Selectional Preference: Semantic constraints on the set

of arguments that a group of words will accept.

Natalie likes
conferences. 🙂

Natalie drinks
conferences. 🤨

We might represent these as a
finite state model like this:

Natalie Parde - UIC CS 421 13

Noun
(Subject)

Transitive
Verb

(Head)

Noun
(Direct
Object)

Intransitive
Verb

(Head)

One of the reasons why the
number of possible English

sentences is infinite?

• Language is recursive!
• In theory, we can have unlimited

modifiers (adjectives and adverbs)
• Natalie likes conferences.
• Natalie likes academic

conferences.
• Natalie likes busy academic

conferences.

Natalie Parde - UIC CS 421 14

We can
easily model
simple cases
of recursion

in a finite
state model

as well.

Natalie Parde - UIC CS 421 15

Noun
(Subject)

Verb

Noun
(Direct
Object)

Adjective

However,
recursion in
sentences
can also be
more
complex.

Natalie likes conferences.

Natalie likes conferences in
Europe.

Natalie likes conferences in
Europe in the summer.

Natalie Parde - UIC CS 421 16

Still, can’t we just make complex
FSAs?

• FSAs can model recursion, but they can’t model hierarchical
structure or handle issues like attachment ambiguity

Natalie Parde - UIC CS 421 17

Natalie likes conferences in Europe or Asia.Natalie likes
conferences in
either Europe or
Asia.

Natalie likes two
things: Asia, or
conferences in
Europe.Natalie likes conferences in Europe or Asia.

Hierarchical trees to
the rescue!

• A sentence consists of words that can be grouped
into phrases (constituents) using a hierarchical
structure

• Formal trees will usually have internal (non-
terminal) nodes and outer (terminal) leaves

• Nodes: Elements of sentence structure
• Constituent type
• POS type

• Leaves: Surface wordforms
• The nodes and leaves are connected to one another

by branches

Natalie Parde - UIC CS 421 18

What does this look like?

Natalie Parde - UIC CS 421 19

S

NP VP

N

NNP

V

Natalie

VBZ

likes

NP

N PP

NNS

conferences

P NP

N NP-CJ

NNP CJ NP

Europe CC N

or NNP

Asia

IN

in

The grammars defining these hierarchical
trees are context-free grammars.

• Context-Free Grammar (CFG): A mathematical system for modeling constituent
structure in regular languages.

• CFGs are defined by productions that indicate which strings they can generate.
• Production: Rules expressing the allowable combinations of symbols (e.g., POS

types) that can form a constituent
• Productions can be hierarchically embedded

• Noun Phrase (NP) → Determiner Nominal
• Nominal → Noun | Nominal Noun

• Why is it called context-free?
• A subtree can be replaced by a production rule independent of the greater context

(other nodes in the hierarchy) in which it occurs.
• Also called Phrase-Structure Grammars

Natalie Parde - UIC CS 421 20

Formal Definition

21

N
atalie Parde - U

IC
 C

S 421

• A CFG is a 4-tuple 𝑵,𝜮, 𝑹, 𝑺 consisting of:
• A set of non-terminal nodes N

• N = {S, NP, VP, PP, N, V, …}
• A set of terminal nodes (leaves) 𝜮

• 𝜮 = {time, flies, like, an, arrow, …}
• A set of rules R
• A start symbol S ∈ N

• How to check for grammatical correctness?
• Any sentences for which the CFG can construct a tree (all words in the

sentence must be reachable as leaf nodes) are accepted by the CFG.

Production rules determine how
constituents can be combined.

Constituent: A group of
words that behaves as a

single unit.

• Noun Phrase: the woman,
the woman with red hair,
the last conference of the
year

• Prepositional Phrase: with
red hair, of the year

• Verb Phrase: drinks tea,
likes going to conferences

Constituents contain
heads and dependents

• Heads: the woman with
red hair, the last
conference of the year

• Dependents: the woman
with red hair, the last
conference of the year

Dependents can be
arguments or adjuncts

• Arguments are
obligatory
• Natalie likes

conferences. 🙂
• Natalie likes. 🤨

• Adjuncts are optional
• Natalie drinks tea. 🙂
• Natalie drinks. 🙂

Natalie Parde - UIC CS 421 22

Properties of
Constituents

• Constituents can be substituted with one another in the context of the greater sentence
• The woman with red hair rolled her eyes as lightning immediately struck the man’s house.
• The unicorn rolled her eyes as lightning immediately struck the man’s house.

• A constituent can move around within the context of the sentence
• The woman with red hair rolled her eyes as lightning immediately struck the man’s house.
• Lightning immediately struck the man’s house as the woman with red hair rolled her eyes.

• A constituent can be used to answer a question about the sentence
• Who rolled her eyes? The woman with red hair.

Natalie Parde - UIC CS 421 23

The structure of constituents in a
tree corresponds to their meaning.

Natalie Parde - UIC CS 421 24

VP

VP

PP

S

NP

PRP

I VBP

NP

NNS

IN

NP

NNS

PP NPeat

spaghetti

with meatballs

VP

VP

NP

S

NP

PRP

I VP

PP

IN

PP

NNSVBP

with chopsticks

NP

NNS

eat spaghetti

Case
Example
• Draw a constituent tree for

the sentence:
• Time flies like an

arrow.

Natalie Parde - UIC CS 421 25

Production Rules
S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
 flies | arrow |
 bananaVP ! V

Case
Example

Natalie Parde - UIC CS 421 26

Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
flies | arrow |
bananaVP ! V

Time flies like an arrow

Case
Example

Natalie Parde - UIC CS 421 27

Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
flies | arrow |
bananaVP ! V

Time flies like an arrow

Case
Example

Natalie Parde - UIC CS 421 28

Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
flies | arrow |
bananaVP ! V

Time flies like an arrow

Case
Example

Natalie Parde - UIC CS 421 29

Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
flies | arrow |
bananaVP ! V

Time flies like an arrow

Case
Example

Natalie Parde - UIC CS 421 30

Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
flies | arrow |
bananaVP ! V

Time flies like an arrow

Case
Example

Natalie Parde - UIC CS 421 31

Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit |
flies | arrow |
bananaVP ! V

Time flies like an arrow

CFGs and Center Embedding

• Formally, these sentences are all grammatical, because
they can be generated by the CFG that is required for the
first sentence:

• S → NP VP
• NP → NP RelClause
• RelClause → that NP ate

• However, very few humans would consider the last
sentence to be grammatically correct!

• CFGs are unable to capture bounded recursion (e.g.,
embedding only one relative clause)

• Thus, formal grammaticality isn’t necessarily equivalent to
human perception of grammaticality (but in this class we’ll
make the simplifying assumption that these are equivalent)

Natalie Parde - UIC CS 421 32

Natalie knew a lot. 🙂

The zebra that Natalie knew
knew a lot. 😕

The unicorn that the zebra that
Natalie knew knew knew a lot. 🤯

Refresher:
Typical CFG
Constituents
(English)

Natalie Parde - UIC CS 421 33

• Simple:
• She talks. (pronoun)
• Natalie talks. (proper noun)
• A person talks. (determiner + common noun)

• Complex:
• A professorial person talks. (determiner + adjective + common noun)
• The person at the lectern talks. (noun phrase (determiner + common

noun) + prepositional phrase)
• The person who teaches NLP talks. (noun phrase (determiner +

common noun) + relative clause)

Noun phrases (NPs)

• NP → Pronoun
• NP → Proper Noun
• NP → Determiner Common Noun
• NP → Determiner Adjective Common Noun
• NP → NP PP
• NP → NP RelClause
• Pronoun → {she}
• Determiner → {a}
• Proper Noun → {Natalie}
• Common Noun → {person}
• Adjective → {professorial}

Visualized as production rules:

Refresher: Typical CFG
Constituents (English)

• AdjP → Adjective
• AdjP → Adverb AdjP
• Adj → {professorial}
• Adv → {very}

• A very professorial person talks.

Adjective Phrases (AdjP)

• PP → Preposition NP
• Preposition → {at}

Prepositional Phrases (PP)

Natalie Parde - UIC CS 421 34

Refresher: Typical CFG Constituents
(English)

Verb Phrases (VPs)

• She drinks. (verb)
• She drinks tea. (verb + noun phrase)
• She drinks tea from a mug. (verb

phrase + prepositional phrase)
• Visualized as production rules:

• VP → V
• VP → V NP
• VP → V NP PP
• VP → VP PP
• V → {drinks}

We can also capture subcategorization
this way!

• She drinks. (verb)
• She drinks tea. (verb + noun phrase)
• She gives him tea. (verb phrase +

noun phrase + noun phrase)
• Visualized as production rules:

• VP → Vintransitive
• VP → Vtransitive NP
• VP → Vditransitive NP NP
• Vintransitive → {drinks, talks}
• Vtransitive → {drinks}
• Vditransitive → {gives}

Natalie Parde - UIC CS 421 35

To
comprehensively
cover English
grammar, more
complex
production rules
are necessary.

• We want to prevent against grammatical
incorrectness:

• She drinks tea. 🙂
• I drinks tea. 🤨
• They drinks tea. 🤨

• We can do this by establishing different
production rules for different tenses or
other phenomena:

• Present Tense: She drinks tea.
• Simple Past Tense: She drank tea.
• Past Perfect Tense: She has drunk

tea.
• Future Perfect Tense: She will

have drunk tea.
• Passive: The tea was drunk by

her.
• Progressive: She will be drinking

tea.

• VP → Vhave VPpastPart

• VP → Vbe VPpass

• VPpastPart → VpastPart NP
• VPpass → VpastPart PP
• Vhave → {has}
• VpastPart → {drunk}
• etc….

Natalie Parde - UIC CS 421 36

Refresher:
Typical CFG
Constituents
(English)

37

N
atalie Parde - U

IC
 C

S 421

• Production rules can also recursively include sentences
• She drinks tea. (noun phrase + verb phrase)
• Sometimes, she drinks tea. (adverbial phrase + sentence)
• In England, she drinks tea. (prepositional phrase + sentence)

• Visualized as production rules:
• S → NP VP
• S → AdvP S
• S → PP S

• And they can cover questions:
• Yes/No Questions

• Auxiliary + Subject + Verb Phrase
• Does she drink tea?

• YesNoQ → Aux NP VP
• Wh-Questions

• Subject wh-questions contain a wh-word, an auxiliary, and a verb
phrase

• Who has drunk the tea?
• Object wh-questions contain a wh-word, an auxiliary, a noun phrase

and a verb phrase
• What does Natalie drink?

Coordinating Conjunctions and Relative
Clauses

• She drinks tea and he drinks coffee.
• Natalie and her mom drink tea.
• She drinks tea and eats cake.
• Production Rules:

• S → S conj S
• NP → NP conj NP
• VP → VP conj VP

• Relative clauses modify a noun phrase by
adding extra information

• Rather than having their own noun phrase, it is
understood that the NP is filled by the NP that
the relative clause modifies

• She had a poodle that drank my tea. → that =
a poodle

• There are two types of relative clauses
• Subject: She had a poodle that drank my tea.

• We cannot drop the relative pronoun

• Object: I’d really been enjoying the tea that her
poodle drank.

• We can drop the relative pronoun and the sentence still
works

Natalie Parde - UIC CS 421 38

This
Week’s
Topics

Natalie Parde - UIC CS 421 39

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

CFGs and
dependency
grammars
for regular
languages
can be
highly
complex!

However, they facilitate automated syntactic and
semantic parsing, which helps us better
understand language
Syntactic parsing: The process of
automatically recognizing and assigning
syntactic (grammatical) roles to the constituents
within sentences

Natalie Parde - UIC CS 421 40

Why is syntactic parsing
useful?
• Lots of reasons! For example:

• Grammar checking
• Downstream applications

• Question answering
• Information extraction

Natalie Parde - UIC CS 421 41

What courses were taught by UIC CS assistant professors in 2023?

Subject = courses …don’t return a list of UIC CS assistant professors!

Recognition vs.
Parsing

42

N
atalie Parde - U

IC
 C

S 421

• Recognition: Deciding whether a sentence belongs to
the language specified by a formal grammar.

• Parsing: Producing a parse tree for the sentence based
on that formal grammar.

• Both tasks are necessary for generating correct syntactic
parses!

• Failure to accurately recognize whether a sentence
can be parsed will lead to misparses, which will in
turn lead to additional errors in downstream
applications.

• Parsing is more “difficult” (greater time complexity) than
recognition

Remember, language is
ambiguous!

Input sentences may have
many possible parses

N
atalie Parde - U

IC
 C

S 421

43

VP

VP

PP

S

NP

PRP

I VBP

NP

NNS

IN

NP

NNS

PP NPeat

spaghetti

withchopsticks

VP

VP

NP

S

NP

PRP

I VP

PP

IN

PP

NNSVBP

with chopsticks

NP

NNS

eat spaghetti

There are
also
many
ways to
generate
parse
trees.

N
atalie Parde - U

IC
 C

S 421

44

Top-Down Parsing:

Goal-driven
Builds parse tree from the
start symbol down to the
terminal nodes

Bottom-Up Parsing:

Data-driven
Builds parse tree from the
terminal nodes up to the
start symbol

Top-
Down
Parsing

45

N
atalie Parde - U

IC
 C

S 421

• Assume that the input can be derived by the
designated start symbol S

• Find the tops of all trees that can start with
S

• Look for all production rules with S on
the left-hand side

• Find the tops of all trees that can start with
those constituents

• (Repeat recursively until terminal nodes are
reached)

• Trees whose leaves fail to match all words
in the input sentence can be rejected,
leaving behind trees that represent
successful parses

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 46

Book that flight.

Input Sentence:

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Grammar:

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Lexicon:

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 47

Book that flight.

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

S S S

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 48

Book that flight.

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

S S S

NP VP Aux NP VP VP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 49

Book that flight.
S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

Pronoun Verb Proper-Noun Verb NP Det Nominal Verb NP PP

Pronoun Verb PP Pronoun VP PP Det Nominal Verb Pronoun VerbNPPP

…and many more!

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 50

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 51

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 52

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 53

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 54

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 55

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Top-Down Parsing: Example

Natalie Parde - UIC CS 421 56

Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Bottom-
Up
Parsing

57

N
atalie Parde - U

IC
 C

S 421

• Earliest known parsing algorithm!
• Starts with the words in the input sentence,

and tries to build trees from those words up
by applying rules from the grammar one at
a time

• Looks for places in the in-progress parse
where the righthand side of a production
rule might fit

• Success = parser builds a tree rooted in the
start symbol S that covers all of the input
words

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 58

Book that flight.

Input Sentence:

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Grammar:

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Lexicon:

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 59

Book that flight.

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Noun Det Noun Verb Det Noun

book that flight book that flight

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 60

Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 61

Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 62

Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 63

Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

S

Bottom-Up Parsing: Example

Natalie Parde - UIC CS 421 64

Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

S

Top-
Down vs.
Bottom-

Up
Parsing

• Pros:
• Never wastes time exploring invalid trees

• Cons:
• Spends considerable effort on trees that are not

consistent with the input

Top-Down Parsing

• Pros:
• Never suggests trees that are inconsistent with

the input
• Cons:

• Generates many trees and subtrees that cannot
result in a valid sentence (according to
production rules specified by the grammar)

Bottom-Up Parsing

Natalie Parde - UIC CS 421 65

This
Week’s
Topics

Natalie Parde - UIC CS 421 66

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

Many
forms of
ambiguity
can arise
during
syntactic
parsing!

• Structural Ambiguity: Occurs when
a grammar allows for more than one
possible parse for a given sentence

• Attachment Ambiguity: Occurs
when a constituent can be
attached to a parse tree at more
than one place

• I eat spaghetti with
chopsticks.

• Coordination Ambiguity:
Occurs when different sets of
phrases can be conjoined by a
conjunction

• I grabbed a muffin from
the table marked “nut-free
scones and muffins,”
hoping I’d parsed the sign
correctly.

• Local Ambiguity: Occurs when a
word may be interpreted multiple
ways

Natalie Parde - UIC CS 421 67

Noun Det Noun Verb Det Noun

book that flight book that flight

• Det → that | this | a
• Noun → book | flight | meal | money
• Verb → book | include | prefer
• Pronoun → I | she | me
• Proper-Noun → Houston | NWA
• Aux → does
• Preposition → from | to | on | near | through

All of this ambiguity can
lead to really complex

search spaces.

• Backtracking approaches expand the
search space incrementally, systematically
exploring one state at a time

• When they arrive at trees inconsistent
with the input, they return to an
unexplored alternative

• However, in doing so they tend to
discard valid subtrees …this means
that time-consuming work needs to be
repeated

• More efficient approach?
• Dynamic programming

Natalie Parde - UIC CS 421 68

Dynamic Programming Parsing
Methods

69

N
atalie Parde - U

IC
 C

S 421

• Widely used methods:
• Cocke-Kasami-Younger (CKY) algorithm
• Earley algorithm

CKY
Algorithm

70

N
atalie Parde - U

IC
 C

S 421

• One of the earliest recognition and parsing
algorithms

• Bottom-up dynamic programming
• Standard version can only recognize CFGs

in Chomsky Normal Form (CNF)

Chomsky
Normal

Form

N
atalie Parde - U

IC
 C

S 421

• Grammars are restricted to production rules of the
form:

• A → B C
• A → w

• This means that the righthand side of each rule must
expand to either two non-terminals or a single terminal

• Any CFG can be converted to a corresponding CNF
grammar that accepts exactly the same set of strings
as the original grammar!

71

How does this conversion work?

72

N
atalie Parde - U

IC
 C

S 421

• Three situations we need to address:
1. Production rules that mix terminals and non-terminals on the

righthand side
2. Production rules that have a single non-terminal on the righthand

side (unit productions)
3. Production rules that have more than two non-terminals on the

righthand side

• Situation #1: Introduce a dummy non-terminal that covers only the
original terminal

• INF-VP → to VP could be replaced with INF-VP → TO VP and TO → to

• Situation #2: Replace the non-terminals with the non-unit production
rules to which they eventually lead

• A → B and B → w could be replaced with A → w

• Situation #3: Introduce new non-terminals that spread longer sequences
over multiple rules

• A → B C D could be replaced with A → B X1 and X1 → C D

Original CNF

S → NP VP S → NP VP

S → AdjP NP VP S → X1 VP

X1 → AdjP NP

S → VP S → book | include |
prefer

CKY Algorithm

73

N
atalie Parde - U

IC
 C

S 421

• With the grammar in CNF, each non-terminal node above the POS
level of the parse tree will have exactly two children

• Thus, a two-dimensional matrix can be used to encode the tree
structure

• Each cell [i,j] contains a set of non-terminals that represent all
constituents spanning positions i through j of the input

• Cell that represents the entire input resides in position [0,n]

CKY Algorithm

• Non-terminal entries: For each constituent [i,j], there is a position, k,
where the constituent can be split into two parts such that i < k < j

• [i,k] must lie to the left of [i,j] somewhere along row i, and [k,j]
must lie beneath it along column j

• To fill in the parse table, we proceed in a bottom-up fashion so when
we fill a cell [i,j], the cells containing the parts that could contribute to
this entry have already been filled

Natalie Parde - UIC CS 421 74

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 75

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

0

1

2

3

4

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 76

Noun,
Verb, S,
Nominal,

VP

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

0

1

2

3

4

Noun,
Verb, S,
Nominal,

VP

Det

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 77

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

Noun,
Nominal

Natalie Parde - UIC CS 421 78

2 - flight 3 - through 4 - Chicago

Noun,
Verb, S,
Nominal,

VP

Det

CKY
Algorithm:

Example

0 - Book 1 - the

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

Prep.

Natalie Parde - UIC CS 421 79

3 - through 4 - Chicago

Noun,
Nominal

2 - flight

Noun,
Verb, S,
Nominal,

VP

Det

CKY
Algorithm:

Example

0 - Book 1 - the

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

Natalie Parde - UIC CS 421 80

4 - Chicago

Prep.

3 - through

Noun,
Nominal

2 - flight

Noun,
Verb, S,
Nominal,

VP

Det

CKY
Algorithm:

Example

0 - Book 1 - the

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 81

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 82

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 83

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 84

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 85

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 86

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 87

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

S, VP

NP

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 88

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 89

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 90

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

S, VP

NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 91

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 92

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 93

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

S, VP

NP NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 94

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 95

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP S, VP1,
VP2

NP NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 96

If we arrive at VP in multiple ways, each way
is an alternative parse (VP1, VP2, …, VPn).

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

CKY Algorithm

• In the previous example, we recognized a valid that this sentence
was valid according to our grammar by finding an S in cell [0,n]

• To return all possible parses, we need to also pair each non-terminal
with pointers to the table entries from which it was derived

• Then, we can choose a non-terminal and recursively retrieve its
component constituents from the table

• Complexity of this algorithm:
• Time complexity: O(n3)
• Space complexity: O(n2)

Natalie Parde - UIC CS 421 97

NP

Prep.

Noun,
Nominal

Noun,
Verb, S,
Nominal,

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP S, VP1,
VP2

NP NP

Nominal

PP

CKY
Algorithm:

Example

Natalie Parde - UIC CS 421 98

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

Summary:
Constituency
Grammars

Natalie Parde - UIC CS 421 99

Constituency grammars describe a language’s syntactic structure

Constituents, a core component of constituency grammars, are
groups of words that function as a single unit

There are many ways to represent constituency grammars, but the
most common way is by using trees

Constituency grammars can generate any sentences belonging to
their language using (potentially recursive) combinations of
production rules

Syntactic parsing is a way to automatically describe the structure
of an input sentence according to a constituency grammar

Syntactic parsing can be performed using either a top-down or a
bottom-up approach

One popular bottom-up approach is the CKY algorithm

This
Week’s
Topics

Natalie Parde - UIC CS 421 100

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

Earley
Parsing

101

N
atalie Parde - U

IC
 C

S 421

• Top-down dynamic parsing approach
• Table is length n+1, where n is

equivalent to the number of words
• Table entries contain three types of

information:
• A single grammar rule
• Information about the progress

made in completing that rule
• A • within the righthand side of a

state’s grammar rule indicates the
progress made towards recognizing it

• The position of the in-progress rule
with respect to the input

• Represented by two numbers,
indicating (1) where the state begins,
and (2) where its dot lies

Example
States

• Input: Book that flight.
• S → • VP, [0,0]

• Top-down prediction for this particular kind
of S

• First 0: Constituent predicted by this state
should begin at the start of the input

• Second 0: Dot lies at the start of the input
as well

• NP → Det • Nominal, [1,2]
• NP begins at position 1
• Det has been successfully parsed
• Nominal is expected next

• VP → V NP •, [0,3]
• Successful discovery of a tree

corresponding to a VP that spans the entire
input

Natalie Parde - UIC CS 421 102

Earley
Algorithm

• An Earley parser moves through the n+1 sets
of states in a chart in order

• At each step, one of three operators is
applied to each state depending on its status

• Predictor
• Scanner
• Completer

• States can be added to the chart, but are
never removed

• The algorithm never backtracks
• The presence of S → 𝛼 •, [0,n] indicates a

successful parse

Natalie Parde - UIC CS 421 103

Earley
Operators:
Predictor

N
atalie Parde - U

IC
 C

S 421

104

S → •
VP, [0,0]

VP → • Verb, [0,0]
VP → • Verb NP, [0,0]
VP → • Verb NP PP, [0,0]
VP → • Verb PP, [0,0]
VP → • VP PP, [0,0]

Predictor

Creates new states
Applied to any state that has a non-terminal
non-POS immediately to the right of its dot
New states are placed into the same chart
entry as the generating state
They begin and end at the same point in the
input where the generating state ends

Earley
Operators:
Scanner

105

N
atalie Parde - U

IC
 C

S 421

• Used when a state has a
POS category to the right of
the dot

• Examines input and (if
relevant) adds a state
predicting a word with a
particular POS into the chart

• VP → • Verb NP, [0,0]
• Since category following

the dot is a part of
speech (Verb)….

• Verb → book •, [0,1]

Earley
Operators:
Completer

• Applied to a state when its dot has reached the
right end of the rule

• Indicates that the parser has successfully
discovered a grammatical category over some
span of input

• Finds all previously created states that were
searching for this grammatical category, and
creates new states that are copies with their
dots advanced past the grammatical category

• NP → Det Nominal •, [1,3]
• What incomplete states end at position 1

and expect an NP?
• VP → Verb • NP, [0,1]
• VP → Verb • NP PP, [0,1]
• So, add VP → Verb NP •, [0,3] and the new

incomplete VP → Verb NP • PP, [0,3] to the
chart

Natalie Parde - UIC CS 421 106

Earley
Algorithm:
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

Natalie Parde - UIC CS 421 107

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

• Book that flight.

Earley
Algorithm:
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

Natalie Parde - UIC CS 421 108

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

Book • that flight.

Earley
Algorithm:
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

Natalie Parde - UIC CS 421 109

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

Book that • flight.

Earley
Algorithm:
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer

3 S16 NP → Det Nominal • 1, 3 Completer

3 S17 VP → Verb NP • 0, 3 Completer

3 S18 S → VP • 0, 3 Completer

Natalie Parde - UIC CS 421 110

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

Book that flight. •

Which
states

participate
in the final

parse?

Chart State Rule Start, End Added By

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer

3 S16 NP → Det Nominal • 1, 3 Completer

3 S17 VP → Verb NP • 0, 3 Completer

3 S18 S → VP • 0, 3 Completer 111

Which states
participate in

the final
parse?

Chart State Rule Start, End Added By (Backward Pointer)

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer (S14)

3 S16 NP → Det Nominal • 1, 3 Completer (S11, S15)

3 S17 VP → Verb NP • 0, 3 Completer (S6, S16)

3 S18 S → VP • 0, 3 Completer (S17) 112

Successful Final Parse

Natalie Parde - UIC CS 421
113

S

VP

Verb NP

Det Nominal

Noun

book

that

flight

Chart State Rule Start, End Added By (Backward Pointer)

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer (S14)

3 S16 NP → Det Nominal • 1, 3 Completer (S11, S15)

3 S17 VP → Verb NP • 0, 3 Completer (S6, S16)

3 S18 S → VP • 0, 3 Completer (S17)

What if we don’t need a full parse tree?

• Full parse trees can be complex
and time-consuming to build

• Many NLP tasks don’t require full
hierarchical parses

Natalie Parde - UIC CS 421 114

Her new order of computers arrived.

Noun Phrase

Prepositional Phrase

Noun Phrase

Verb Phrase

Easier
solution?

• Partial parsing, or shallow parsing
• How to generate a partial parse?

• Chunking

Natalie Parde - UIC CS 421 115

S

NP VP

NP PP Verb

Prep Adj. Noun Prep Noun

Her new shipment of computers arrived

[Her new shipment]NP [of]PP [computers]NP [arrived]VP

Chunking: Fundamental Tasks
Natalie Parde - UIC CS 421 116

Segmentation: Identify the non-overlapping, fundamental
phrases

[Her new order] [of] [computers] [arrived]

Labeling: Assign labels to those phrases

[Her new order]NP [of]PP [computers]NP [arrived]VP

What is, and is not, a chunk?

• Non-recursive span of text
• When chunking phrases that

would otherwise be parsed
recursively:

• Keep head word
• Keep all material belonging to

constituent that occurs before
the head word

Natalie Parde - UIC CS 421 117

[Her new shipment of computers]NP [arrived]VP

[Her new shipment]NP [of]PP [computers]NP [arrived]VP

How do we segment
text into spans?

• IOB tagging
• I: Tokens inside a span
• O: Tokens outside any span
• B: Tokens beginning a span

Natalie Parde - UIC CS 421 118

Task: IOB Tagging (All Constituent
Types)

Natalie Parde - UIC CS 421 119

Her new order of computers arrived.

B_NP

I_NP

I_NP

B_PP

B_NP

B_VP

Task: IOB Tagging (Noun Phrases)

Natalie Parde - UIC CS 421 120

Her new order of computers arrived.

B_NP

I_NP

I_NP

O

B_NP

O

How do we
evaluate
chunking
systems?

• Standard text classification metrics,
comparing predictions with a gold
standard

• Precision
• Recall
• F-measure

N
atalie Parde - U

IC
 C

S 421

121

This
Week’s
Topics

Natalie Parde - UIC CS 421 122

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

How can we resolve some of
the parsing ambiguities
we’ve observed?

• Probabilistic Context-Free Grammars: Can be used to
determine which parse out of multiple valid parses should be
selected, based on how likely the parse tree is to occur in a
large corpus

• Same core components as regular CFGs:
• A set of non-terminals, N
• A set of terminal symbols, Σ
• A set of rules or productions, R
• A designated start symbol, S

• Each rule in R is of the form A → β, where A is a non-
terminal and β is a string of symbols from the set Σ ∪ 𝑁

Natalie Parde - UIC CS 421 123

How do
PCFGs
differ from
CFGs?

• R is augmented with a probability, [p],
learned from a corpus

• The sum of all probabilities for a given
non-terminal is 1.0

• For example, if the following three
expansions for S were possible, they
might have the probabilities:

• S → NP VP [0.80]
• S → Aux NP VP [0.15]
• S → VP [0.05]

Natalie Parde - UIC CS 421 124

Probabilistic
Context-
Free
Grammars

• The probability of sentence S having a parse
tree T is the product of the individual
probabilities associated with its constituent
rules

• 𝑃 𝑇, 𝑆 = ∏!"#
$ 𝑃(𝛽!|𝐴!)

• To disambiguate between multiple valid
parses, we find the parse tree T that results in
the highest probability for the sentence S

• ⏞𝑇 𝑆 = argmax
%	'.).	*"yield(%)

𝑃(𝑇)

• We can compute the probabilities for our
parse trees by extending the parsing
algorithms we already have

Natalie Parde - UIC CS 421 125

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 126

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Still assume grammar is in
Chomsky normal form!

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 127

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 128

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 129

N (0.01)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 130

N (0.01)

V (0.05)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 131

N (0.01)

V (0.05)

Det
(0.40)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 132

N (0.01)

V (0.05)

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 133

NP (0.3 *
0.4 * 0.01
= 0.0012)

N (0.01)

V (0.05)

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 134

NP (0.3 *
0.4 * 0.01
= 0.0012)

N (0.01) ☹

V (0.05)

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 135

NP (0.3 *
0.4 * 0.01
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 136

NP (0.3 *
0.4 * 0.01
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 137

NP (0.3 *
0.4 * 0.01
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 138

NP (0.3 *
0.4 * 0.01
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 139

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 140

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 141

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 142

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 143

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 *
0.05 *

0.0024 =
0.000024)

Det
(0.40)

NP (0.3 *
0.4 * 0.02
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 144

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 *
0.05 *

0.0024 =
0.000024)

Det
(0.40)

NP (0.3 *
0.4 * 0.01
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 145

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 146

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 147

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 148

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 149

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 150

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 *
0.05 *

0.0024 =
0.000024)

Det
(0.40)

NP (0.3 *
0.4 * 0.01
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 151

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 *
0.05 *

0.0024 =
0.000024)

Det
(0.40)

NP (0.3 *
0.4 * 0.01
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 152

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 153

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 154

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 155

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹
S (0.8 *
0.0012 *

0.000024 =
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

VP (0.2 *
0.05 *

0.0024 =
0.000024)

Det
(0.40)

NP (0.3 *
0.4 * 0.01
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 156

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹
S (0.8 *
0.0012 *

0.000024 =
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

VP (0.2 *
0.05 *

0.0024 =
0.000024)

Det
(0.40)

NP (0.3 *
0.4 * 0.01
= 0.0024)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 157

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹
S (0.8 *
0.0012 *

0.000024 =
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 158

NP (0.3 *
0.4 * 0.01
= 0.0012)

☹ ☹
S (0.8 *
0.0012 *

0.000024 =
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det
(0.40)

N (0.02)

Det
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 *
0.05 *

0.0024 =
0.000024)

NP (0.3 *
0.4 * 0.01
= 0.0024)

Where did
these
probabilities
come from?

• Often, a corpus
• 𝑃 𝛼 → 𝛽 𝛼 = !"#$%('→))

∑" !"#$%('→,)
= !"#$%('→))

!"#$%(')

• Or, if we don’t have a labeled corpus, we
can apply a generalization of the forward-
backward algorithm called the inside-out
algorithm

Natalie Parde - UIC CS 421 159

Challenges
Associated
with PCFGs

• PCFGs solve many issues associated with
resolving ambiguities, but they still have:

• Poor independence assumptions, which may
make it difficult to model important structural
dependencies in the parse tree

• Lack of lexical conditioning, which may allow
lexical dependency issues (e.g., those
dealing with preposition attachment or other
syntactic properties) to arise

• More sophisticated techniques are needed, such
as:

• Adding extra constraints to rules by splitting
them based on their parents or their syntactic
positions

• Using slightly different grammatical paradigms,
such as probabilistic lexicalized CFGs

Natalie Parde - UIC CS 421 160

This
Week’s
Topics

Natalie Parde - UIC CS 421 161

Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars

Lexicalized Parsers
• Allow lexicalized rules

• Non-terminals specify lexical heads and associated POS tags
• NP(plants, NNS) → AdjP(purple, JJ) NNS(plants, NNS)

Natalie Parde - UIC CS 421 162

S(purchased, VBD)

NP(Natalie, NNP)

NNP(Natalie, NNP)

VP(purchased, VBD)

VBD(purchased, VBD) NP(plants, NNS)

AdjP(purple, JJ) NNS(plants, NNS)

JJ(purple, JJ)

Natalie purchased

purple

plants

Lexicalized
Grammars

• Intuitively, much like having many copies of
the same production rule

• NP(plants, NNS) → AdjP(purple, JJ)
NNS(plants, NNS)

• NP(plants, NNS) → AdjP(green, JJ)
NNS(plants, NNS)

• NP(computers, NNS) → AdjP(purple, JJ)
NNS(computers, NNS)

• Two types of rules:
• Lexical Rules: Generate a terminal word

• Deterministic
• Internal Rules: Generate a non-terminal

constituent
• Require estimated probabilities

Natalie Parde - UIC CS 421 163

Lexical vs. Internal
Rules

Natalie Parde - UIC CS 421 164

S(purchased, VBD)

NP(Natalie, NNP)

NNP(Natalie, NNP)

VP(purchased, VBD)

VBD(purchased, VBD) NP(plants, NNS)

AdjP(purple, JJ) NNS(plans, NNS)

JJ(purple, JJ)

Natalie purchased

purple

plants

Internal Rules:
S(purchased, VBD) → NP(Natalie, NNP) VP(purchased, VBD)

Lexical Rules:
JJ(purple, JJ) → purple

The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!

Natalie Parde - UIC CS 421 165

Non-terminal LHS
NP(plants, NNS)

Non-terminal left of head
AdjP(purple, JJ)

Head
NNS(plants, NNS)

Non-terminal right of head
PP(under, P)

PH: Probability for generating headsPL: Probability for generating
dependents on the left

PR: Probability for generating
dependents on the right

The
Collins
Parser

• Goal: Use PH, PL, and PR to estimate the
overall probability for the production rule

• Method:
• Surround the righthand side of the rule with

STOP non-terminals
• NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants,

NNS) PP(under, IN) STOP
• Compute the individual PH, PL, and PR values for

the head and the non-terminals to its left and
right (including STOP non-terminals)

• Multiply these together

166

Grab the purple plants under the bookcase.

The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!

Natalie Parde - UIC CS 421 167

Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents
on the left

PR: Probability for generating dependents
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!

Natalie Parde - UIC CS 421 168

Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents
on the left

PR: Probability for generating dependents
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!

Natalie Parde - UIC CS 421 169

Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents
on the left

PR: Probability for generating dependents
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

PL(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

PL(L1|LHS H) = P(AdjP(purple, JJ) | NP(plants, NNS) NNS(plants, NNS))

The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!

Natalie Parde - UIC CS 421 170

Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents
on the left

PR: Probability for generating dependents
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

PL(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

PL(L1|LHS H) = P(AdjP(purple, JJ) | NP(plants, NNS) NNS(plants, NNS))

PR(R1|LHS H) = P(PP(under, IN) | NP(plants, NNS) NNS(plants, NNS))

PR(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!

Natalie Parde - UIC CS 421 171

Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents
on the left

PR: Probability for generating dependents
on the right

Grab the purple plants under the bookcase.
NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

PL(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

PL(L1|LHS H) = P(AdjP(purple, JJ) | NP(plants, NNS) NNS(plants, NNS))

PR(R1|LHS H) = P(PP(under, IN) | NP(plants, NNS) NNS(plants, NNS))

PR(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))= PH(H|LHS) * PL(STOP|LHS H) * PL(L1|LHS H) * PR(R1|LHS H) * PR(STOP|LHS H)

Estimate the individual probabilities
using maximum likelihood estimates.

Natalie Parde - UIC CS 421 172

PR(R1|LHS H) = P(PP(under, IN) | NP(plants, NNS) NNS(plants, NNS))

Count(NP plants, NNS 	𝑤𝑖𝑡ℎ	PP under, IN 	𝑎𝑠	𝑎	𝑐ℎ𝑖𝑙𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑟𝑖𝑔ℎ𝑡)
Count(NP plants, NNS)

Combinatory
Categorial
Grammars
(CCGs)

• Heavily lexicalized approach that groups
words into categories and defines ways
that those categories may be combined

• Three major parts:
• Categories
• Lexicon
• Rules

Natalie Parde - UIC CS 421 173

CCG
Categories

• Atomic elements
• 𝒜 ⊆ 𝒞, where 𝒜 is a set of atomic

elements, and 𝒞 is the set of
categories for the grammar

• Simple noun phrases
• Single-argument functions

• (X/Y), (X\Y)	∈ 𝒞, if X, Y ∈ 𝒞
• (X/Y): Seeks a constituent of type

Y to the right, and returns X
• (X\Y): Seeks a constituent of type

Y to the left, and returns X
• Verb phrases, more complex noun

phrases, etc.

Natalie Parde - UIC CS 421 174

CCG
Lexica
and
Rules

175

N
atalie Parde - U

IC
 C

S 421

• CCG lexica assign CCG categories to words
• Chicago: NP

• Atomic category
• cancel: (S\NP)/NP

• Functional category
• Seeks an NP to the right, returning (S\NP), which

seeks an NP to the left, returning S

• CCG rules specify how functions and their arguments may be
combined

• Forward function application: Applies the function to
its argument on the right, resulting in the specified
category

• X/Y Y ⇒ X
• Backward function application: Applies the function

to its argument on the left, resulting in the specified
category

• Y X\Y ⇒ X
• A coordination rule can also be applied

• X CONJ X ⇒ X

CCG Rules: Example

Natalie Parde - UIC CS 421 176

Giordano’s serves Chicago

NP (S\NP)/NP NP

CCG Rules: Example

Natalie Parde - UIC CS 421 177

Giordano’s serves Chicago

NP (S\NP)/NP NP

Forward Application

CCG Rules: Example

Natalie Parde - UIC CS 421 178

Giordano’s serves Chicago

NP S\NP

CCG Rules: Example

Natalie Parde - UIC CS 421 179

Giordano’s serves Chicago

NP S\NP

Backward Application

CCG Rules: Example

Natalie Parde - UIC CS 421 180

Giordano’s serves Chicago

S

CCG
Operations

181

N
atalie Parde - U

IC
 C

S 421

• CCG operations are forward and backward
compositional

• X/Y Y/Z ⇒ X/Z
• Y\Z X\Y ⇒ X\Z

• Type raising
• Converts atomic categories to functional

categories, or simple functional categories
to more complex functional categories

• X ⇒ T/(T\X), where T can be any
existing atomic or functional category

• X ⇒ T\(T/X)
• Facilitates the creation of intermediate

elements that do not directly map to
traditional constituents in the language

• Type raising and function composition can be
employed together to parse long-range
dependencies

CCG Parsing
Frameworks

Natalie Parde - UIC CS 421 182

• Works okay, but needs to be adapted a bit due to the
large number of categories available for each word
(otherwise, lots of unnecessary constituents would be
added to the table)

• The solution: Supertagging
• Trained using CCG treebanks (e.g., CCGBank)
• Predict allowable category assignments (supertags) for

each word in a lexicon, given an input context

Probabilistic CKY

• Heuristic search algorithm that finds the lowest-cost path
to an end state, by exploring the lowest-cost partial
solution at each iteration until a full solution is identified

• Search states = edges representing completed
constituents

• Cost is based on the probability of the CCG derivation
• Results in fewer unnecessary constituents being explored

than probabilistic CKY

A* Algorithm

Evaluating Parsers

• PARSEVAL measures: Seek to determine
how close a predicted parse is to a gold
standard parse for the same text, based on
its individual constituents

• Constituent is correct if it matches a
constituent in the gold standard in terms
of its:

• Starting point
• Ending point
• Non-terminal symbol

Natalie Parde - UIC CS 421 183

Once
constituent
correctness
is defined….

• We can apply the same metrics we use
for other NLP problems!

• Recall	=
#	correct	constituents	in	predicted	parse
#	constituents	in	gold	standard	parse

• Precision	=
#	correct	constituents	in	predicted	parse

#	constituents	in	predicted	parse

Natalie Parde - UIC CS 421 184

Summary:
Statistical
Constituency
Parsing

The Earley algorithm is a top-down dynamic
programming approach for syntactic parsing

We can select the best parse for a sentence using
probabilistic context-free grammars

The CKY algorithm can be updated to incorporate
these probabilities for use with PCFG parsing

An alternative parsing paradigm uses lexicalized
grammar frameworks

We can evaluate parsers using standard NLP
metrics applied based on the number of correctly
identified constituents in a predicted parse

Natalie Parde - UIC CS 421 185

