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POS tags are one 
way to formalize 
language structure.

• Constituency grammars are another!
• Constituency grammars are:

• A set of rules that describe how 
a language can be structured

• A lexicon that defines the words 
and symbols that belong to the 
language
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Constituency 
Grammars

• Break sentences into hierarchical parts
• Provide the necessary structure to answer important 

questions:
• What are the constituents (groups of words that 

behave as a single unit or phrase) in this 
sentence?

• What are the grammatical relations between 
these constituents?

• Which words are dependent upon one another?
• Although most approaches we’ve seen model 

sentences as sequences, formal grammars model 
sentences as recursive generating processes

• Usually, this is done using a tree structure
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It’s all about finding the right balance!
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Overgeneration: English:
Undergeneration:

I love my NLP class so much 
that I don’t even care about it 
being in early morning!

Did you get the email that 
that guy from class said he 
would forward to you?

Well, that just happened.

I love my class!

Did you get his email?

What happened?

Love NLP class my 
so much that don’t 
care about being it 
early morning in!

Did get the you email 
guy that that from 
class said he forward 
to you would?

Well, there just 
happened.



This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



Grammar Formalisms vs. Specific Grammars
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• Grammar Formalisms: A precise way to define and describe the structure of 
independent sentences.

• There are many different grammar formalisms (you can learn much more about 
these in linguistics courses!)

• Specific Grammars: Implementations (according a specific formalism) for a 
particular language

• English, Arabic, Mandarin, or Hindi
• Grammar Formalisms : Specific Grammars :: Programming Languages : Programs
• In general, our specific grammars are close but imperfect ways to formalize a 

language
• For example: There are an infinite number of possible English sentences, but 

our specific grammar for English needs to be finite



Basic English Sentence Structure
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Natalie likes conferences

Noun (Subject) Verb (Head) Noun (Object)



There are many ways to 
represent a sentence!
As a dependency graph:
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Natalie likes conferences

Subject Object likes

Natalie conferences

Subject Object



There are many ways to 
represent a sentence!
As a finite state automaton:
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Noun 
(Subject)

Verb 
(Head)

Noun 
(Object)



There are many ways to 
represent a sentence!
As a hidden Markov model:
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Noun 
(Subject)

Verb 
(Head)

Noun 
(Object)

Natalie, Usman, 
Shahla, Eli, 

Pardis, Ankit, 
Mohammad, 

Souvik, 
Gyeongeun

likes, hates, 
loves, enjoys, 
fears, adores 

conferences, 
workshops, 

coffee, papers



Different types of words accept different types of 
arguments.
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• Subcategorization: Syntactic constraints on the set of 
arguments that a group of words will accept.

• Intransitive verbs accept only subjects
• Sleep, arrive

• Transitive verbs accept a subject and a direct object
• Eat, drink

• Ditransitive verbs accept a subject, a direct object, 
and an indirect object

• Give, make
• Selectional Preference: Semantic constraints on the set 

of arguments that a group of words will accept.

Natalie likes 
conferences. 🙂

Natalie drinks 
conferences. 🤨



We might represent these as a 
finite state model like this:
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Noun 
(Subject)

Transitive 
Verb 

(Head)

Noun 
(Direct 
Object)

Intransitive 
Verb 

(Head)



One of the reasons why the 
number of possible English 

sentences is infinite?

• Language is recursive!
• In theory, we can have unlimited 

modifiers (adjectives and adverbs)
• Natalie likes conferences.
• Natalie likes academic 

conferences.
• Natalie likes busy academic 

conferences.
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We can 
easily model 
simple cases 
of recursion 

in a finite 
state model 

as well.
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Noun
(Subject)

Verb

Noun 
(Direct 
Object)

Adjective



However, 
recursion in 
sentences 
can also be 
more 
complex.

Natalie likes conferences.

Natalie likes conferences in 
Europe.

Natalie likes conferences in 
Europe in the summer.
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Still, can’t we just make complex 
FSAs?

• FSAs can model recursion, but they can’t model hierarchical 
structure or handle issues like attachment ambiguity
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Natalie likes conferences in Europe or Asia.Natalie likes 
conferences in 
either Europe or 
Asia.

Natalie likes two 
things: Asia, or 
conferences in 
Europe.Natalie likes conferences in Europe or Asia.



Hierarchical trees to 
the rescue!

• A sentence consists of words that can be grouped 
into phrases (constituents) using a hierarchical 
structure

• Formal trees will usually have internal (non-
terminal) nodes and outer (terminal) leaves

• Nodes: Elements of sentence structure
• Constituent type
• POS type

• Leaves: Surface wordforms
• The nodes and leaves are connected to one another 

by branches
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What does this look like?
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S

NP VP

N

NNP

V

Natalie

VBZ

likes

NP

N PP

NNS

conferences

P NP

N NP-CJ

NNP CJ NP

Europe CC N

or NNP

Asia

IN

in



The grammars defining these hierarchical 
trees are context-free grammars.

• Context-Free Grammar (CFG): A mathematical system for modeling constituent 
structure in regular languages.

• CFGs are defined by productions that indicate which strings they can generate.
• Production: Rules expressing the allowable combinations of symbols (e.g., POS 

types) that can form a constituent
• Productions can be hierarchically embedded

• Noun Phrase (NP) → Determiner Nominal
• Nominal → Noun | Nominal Noun

• Why is it called context-free?
• A subtree can be replaced by a production rule independent of the greater context 

(other nodes in the hierarchy) in which it occurs.
• Also called Phrase-Structure Grammars
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Formal Definition
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• A CFG is a 4-tuple 𝑵,𝜮, 𝑹, 𝑺  consisting of:
• A set of non-terminal nodes N

• N = {S, NP, VP, PP, N, V, …}
• A set of terminal nodes (leaves) 𝜮

• 𝜮 = {time, flies, like, an, arrow, …}
• A set of rules R
• A start symbol S ∈ N

• How to check for grammatical correctness?
• Any sentences for which the CFG can construct a tree (all words in the 

sentence must be reachable as leaf nodes) are accepted by the CFG.



Production rules determine how 
constituents can be combined.

Constituent: A group of 
words that behaves as a 

single unit.

• Noun Phrase: the woman, 
the woman with red hair, 
the last conference of the 
year

• Prepositional Phrase: with 
red hair, of the year

• Verb Phrase: drinks tea, 
likes going to conferences

Constituents contain 
heads and dependents

• Heads: the woman with 
red hair, the last 
conference of the year

• Dependents: the woman 
with red hair, the last 
conference of the year

Dependents can be 
arguments or adjuncts

• Arguments are 
obligatory
• Natalie likes 

conferences. 🙂
• Natalie likes. 🤨

• Adjuncts are optional
• Natalie drinks tea. 🙂
• Natalie drinks. 🙂
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Properties of 
Constituents

• Constituents can be substituted with one another in the context of the greater sentence
• The woman with red hair rolled her eyes as lightning immediately struck the man’s house.
• The unicorn rolled her eyes as lightning immediately struck the man’s house.

• A constituent can move around within the context of the sentence
• The woman with red hair rolled her eyes as lightning immediately struck the man’s house.
• Lightning immediately struck the man’s house as the woman with red hair rolled her eyes.

• A constituent can be used to answer a question about the sentence
• Who rolled her eyes?  The woman with red hair.
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The structure of constituents in a 
tree corresponds to their meaning.

Natalie Parde - UIC CS 421 24

VP

VP

PP

S

NP

PRP

I VBP

NP

NNS

IN

NP

NNS

PP NPeat

spaghetti

with meatballs

VP

VP

NP

S

NP

PRP

I VP

PP

IN

PP

NNSVBP

with chopsticks

NP

NNS

eat spaghetti



Case 
Example
• Draw a constituent tree for 

the sentence:
• Time flies like an 

arrow.
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Production Rules
S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
     flies | arrow | 
     bananaVP ! V



Case 
Example
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Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
flies | arrow | 
bananaVP ! V

Time flies like an arrow



Case 
Example
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Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
flies | arrow | 
bananaVP ! V

Time flies like an arrow



Case 
Example
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Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
flies | arrow | 
bananaVP ! V

Time flies like an arrow



Case 
Example
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Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
flies | arrow | 
bananaVP ! V

Time flies like an arrow



Case 
Example
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Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
flies | arrow | 
bananaVP ! V

Time flies like an arrow



Case 
Example
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Production Rules

S ! NP VP PP ! P NP

NP ! DET N PP ! P

NP ! N P ! like

NP ! N N V ! flies | like

VP ! VP PP DET ! a | an

VP ! V NP N ! time | fruit | 
flies | arrow | 
bananaVP ! V

Time flies like an arrow



CFGs and Center Embedding

• Formally, these sentences are all grammatical, because 
they can be generated by the CFG that is required for the 
first sentence:

• S → NP VP
• NP → NP RelClause
• RelClause → that NP ate

• However, very few humans would consider the last 
sentence to be grammatically correct!

• CFGs are unable to capture bounded recursion (e.g., 
embedding only one relative clause)

• Thus, formal grammaticality isn’t necessarily equivalent to 
human perception of grammaticality (but in this class we’ll 
make the simplifying assumption that these are equivalent)
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Natalie knew a lot. 🙂

The zebra that Natalie knew 
knew a lot. 😕

The unicorn that the zebra that 
Natalie knew knew knew a lot. 🤯



Refresher: 
Typical CFG 
Constituents 
(English)
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• Simple:
• She talks. (pronoun)
• Natalie talks. (proper noun)
• A person talks. (determiner + common noun)

• Complex:
• A professorial person talks. (determiner + adjective + common noun)
• The person at the lectern talks. (noun phrase (determiner + common 

noun) + prepositional phrase)
• The person who teaches NLP talks. (noun phrase (determiner + 

common noun) + relative clause)

Noun phrases (NPs)

• NP → Pronoun
• NP → Proper Noun
• NP → Determiner Common Noun
• NP → Determiner Adjective Common Noun
• NP → NP PP
• NP → NP RelClause
• Pronoun → {she}
• Determiner → {a}
• Proper Noun → {Natalie}
• Common Noun → {person}
• Adjective → {professorial}

Visualized as production rules:



Refresher: Typical CFG 
Constituents (English)

• AdjP → Adjective
• AdjP → Adverb AdjP
• Adj → {professorial}
• Adv → {very}

• A very professorial person talks.

Adjective Phrases (AdjP)

• PP → Preposition NP
• Preposition → {at}

Prepositional Phrases (PP)
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Refresher: Typical CFG Constituents 
(English)

Verb Phrases (VPs)

• She drinks. (verb)
• She drinks tea. (verb + noun phrase)
• She drinks tea from a mug. (verb 

phrase + prepositional phrase)
• Visualized as production rules:

• VP → V
• VP → V NP
• VP → V NP PP
• VP → VP PP
• V → {drinks}

We can also capture subcategorization 
this way!

• She drinks. (verb)
• She drinks tea. (verb + noun phrase)
• She gives him tea. (verb phrase + 

noun phrase + noun phrase)
• Visualized as production rules:

• VP → Vintransitive
• VP → Vtransitive NP
• VP → Vditransitive NP NP
• Vintransitive → {drinks, talks}
• Vtransitive → {drinks}
• Vditransitive → {gives}
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To 
comprehensively 
cover English 
grammar, more 
complex 
production rules 
are necessary.

• We want to prevent against grammatical 
incorrectness:

• She drinks tea. 🙂
• I drinks tea. 🤨
• They drinks tea. 🤨

• We can do this by establishing different 
production rules for different tenses or 
other phenomena:

• Present Tense: She drinks tea.
• Simple Past Tense: She drank tea.
• Past Perfect Tense: She has drunk 

tea.
• Future Perfect Tense: She will 

have drunk tea.
• Passive: The tea was drunk by 

her.
• Progressive: She will be drinking 

tea.

• VP → Vhave VPpastPart

• VP → Vbe VPpass

• VPpastPart → VpastPart NP
• VPpass → VpastPart PP
• Vhave → {has}
• VpastPart → {drunk}
• etc….
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Refresher: 
Typical CFG 
Constituents 
(English)
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• Production rules can also recursively include sentences
• She drinks tea. (noun phrase + verb phrase)
• Sometimes, she drinks tea. (adverbial phrase + sentence)
• In England, she drinks tea. (prepositional phrase + sentence)

• Visualized as production rules:
• S → NP VP
• S → AdvP S
• S → PP S

• And they can cover questions:
• Yes/No Questions

• Auxiliary + Subject + Verb Phrase
• Does she drink tea?

• YesNoQ → Aux NP VP
• Wh-Questions

• Subject wh-questions contain a wh-word, an auxiliary, and a verb 
phrase

• Who has drunk the tea?
• Object wh-questions contain a wh-word, an auxiliary, a noun phrase 

and a verb phrase
• What does Natalie drink?



Coordinating Conjunctions and Relative 
Clauses

• She drinks tea and he drinks coffee.
• Natalie and her mom drink tea.
• She drinks tea and eats cake.
• Production Rules:

• S → S conj S
• NP → NP conj NP
• VP → VP conj VP

• Relative clauses modify a noun phrase by 
adding extra information

• Rather than having their own noun phrase, it is 
understood that the NP is filled by the NP that 
the relative clause modifies

• She had a poodle that drank my tea. → that = 
a poodle

• There are two types of relative clauses
• Subject: She had a poodle that drank my tea.

• We cannot drop the relative pronoun

• Object: I’d really been enjoying the tea that her 
poodle drank.

• We can drop the relative pronoun and the sentence still 
works
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This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



CFGs and 
dependency 
grammars 
for regular 
languages 
can be 
highly 
complex!

However, they facilitate automated syntactic and 
semantic parsing, which helps us better 
understand language
Syntactic parsing: The process of 
automatically recognizing and assigning 
syntactic (grammatical) roles to the constituents 
within sentences
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Why is syntactic parsing 
useful?
• Lots of reasons!  For example:

• Grammar checking
• Downstream applications

• Question answering
• Information extraction
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What courses were taught by UIC CS assistant professors in 2023?

Subject = courses …don’t return a list of UIC CS assistant professors!



Recognition vs. 
Parsing
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• Recognition: Deciding whether a sentence belongs to 
the language specified by a formal grammar.

• Parsing: Producing a parse tree for the sentence based 
on that formal grammar.

• Both tasks are necessary for generating correct syntactic 
parses!

• Failure to accurately recognize whether a sentence 
can be parsed will lead to misparses, which will in 
turn lead to additional errors in downstream 
applications.

• Parsing is more “difficult” (greater time complexity) than 
recognition



Remember, language is 
ambiguous!

Input sentences may have 
many possible parses
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VP
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S
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I VBP
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NP
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eat spaghetti



There are 
also 
many 
ways to 
generate 
parse 
trees.
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Top-Down Parsing:

Goal-driven
Builds parse tree from the 
start symbol down to the 
terminal nodes

Bottom-Up Parsing:

Data-driven
Builds parse tree from the 
terminal nodes up to the 
start symbol



Top-
Down 
Parsing
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• Assume that the input can be derived by the 
designated start symbol S

• Find the tops of all trees that can start with 
S

• Look for all production rules with S on 
the left-hand side

• Find the tops of all trees that can start with 
those constituents

• (Repeat recursively until terminal nodes are 
reached)

• Trees whose leaves fail to match all words 
in the input sentence can be rejected, 
leaving behind trees that represent 
successful parses



Top-Down Parsing: Example
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Book that flight.

Input Sentence:

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Grammar:

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Lexicon:



Top-Down Parsing: Example
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Book that flight.

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

S S S



Top-Down Parsing: Example
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Book that flight.

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

S S S

NP VP Aux NP VP VP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

S

NP VP

Pronoun Verb Proper-Noun Verb NP Det Nominal Verb NP PP

Pronoun Verb PP Pronoun VP PP Det Nominal Verb Pronoun VerbNPPP

…and many more!

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Top-Down Parsing: Example
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Book that flight.
S

NP VP

Pronoun Verb

S S

Aux NP VP VP

Det Nominal Verb

Noun

Verb NP

Det Nominal

Noun

…and many, many more not shown!

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP



Bottom-
Up 
Parsing

57
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• Earliest known parsing algorithm!
• Starts with the words in the input sentence, 

and tries to build trees from those words up 
by applying rules from the grammar one at 
a time

• Looks for places in the in-progress parse 
where the righthand side of a production 
rule might fit

• Success = parser builds a tree rooted in the 
start symbol S that covers all of the input 
words



Bottom-Up Parsing: Example
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Book that flight.

Input Sentence:

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Grammar:

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Lexicon:



Bottom-Up Parsing: Example
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Book that flight.

Det → that | this | a
Noun → book | flight | meal | money
Verb → book | include | prefer
Pronoun → I | she | me
Proper-Noun → Houston | NWA
Aux → does
Preposition → from | to | on | near | through

Noun Det Noun Verb Det Noun

book that flight book that flight
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Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal
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Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP
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Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP
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Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

S
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Book that flight.

Noun Det Noun Verb Det Noun

book that flight book that flight

S → NP VP
S → Aux NP VP
S → VP
NP → Pronoun
NP → Proper-Noun
NP → Det Nominal
Nominal → Noun
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Nominal Nominal Nominal

NP NP

Verb Det Noun

book that flight

NominalVP

NP

VP

S



Top-
Down vs. 
Bottom-

Up 
Parsing

• Pros:
• Never wastes time exploring invalid trees

• Cons:
• Spends considerable effort on trees that are not 

consistent with the input

Top-Down Parsing

• Pros:
• Never suggests trees that are inconsistent with 

the input
• Cons:

• Generates many trees and subtrees that cannot 
result in a valid sentence (according to 
production rules specified by the grammar)

Bottom-Up Parsing
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This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



Many 
forms of 
ambiguity 
can arise 
during 
syntactic 
parsing!

• Structural Ambiguity: Occurs when 
a grammar allows for more than one 
possible parse for a given sentence

• Attachment Ambiguity: Occurs 
when a constituent can be 
attached to a parse tree at more 
than one place

• I eat spaghetti with 
chopsticks.

• Coordination Ambiguity: 
Occurs when different sets of 
phrases can be conjoined by a 
conjunction

• I grabbed a muffin from 
the table marked “nut-free 
scones and muffins,” 
hoping I’d parsed the sign 
correctly.

• Local Ambiguity: Occurs when a 
word may be interpreted multiple 
ways

Natalie Parde - UIC CS 421 67

Noun Det Noun Verb Det Noun

book that flight book that flight

• Det → that | this | a
• Noun → book | flight | meal | money
• Verb → book | include | prefer
• Pronoun → I | she | me
• Proper-Noun → Houston | NWA
• Aux → does
• Preposition → from | to | on | near | through



All of this ambiguity can 
lead to really complex 

search spaces.

• Backtracking approaches expand the 
search space incrementally, systematically 
exploring one state at a time

• When they arrive at trees inconsistent 
with the input, they return to an 
unexplored alternative

• However, in doing so they tend to 
discard valid subtrees …this means 
that time-consuming work needs to be 
repeated

• More efficient approach?
• Dynamic programming
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Dynamic Programming Parsing 
Methods

69
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• Widely used methods:
• Cocke-Kasami-Younger (CKY) algorithm
• Earley algorithm



CKY 
Algorithm

70
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• One of the earliest recognition and parsing 
algorithms

• Bottom-up dynamic programming
• Standard version can only recognize CFGs 

in Chomsky Normal Form (CNF)



Chomsky 
Normal 

Form
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• Grammars are restricted to production rules of the 
form:

• A → B C
• A → w

• This means that the righthand side of each rule must 
expand to either two non-terminals or a single terminal

• Any CFG can be converted to a corresponding CNF 
grammar that accepts exactly the same set of strings 
as the original grammar!

71



How does this conversion work?
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• Three situations we need to address:
1. Production rules that mix terminals and non-terminals on the 

righthand side
2. Production rules that have a single non-terminal on the righthand 

side (unit productions)
3. Production rules that have more than two non-terminals on the 

righthand side

• Situation #1: Introduce a dummy non-terminal that covers only the 
original terminal

• INF-VP → to VP could be replaced with INF-VP → TO VP and TO → to

• Situation #2: Replace the non-terminals with the non-unit production 
rules to which they eventually lead

• A → B and B → w could be replaced with A → w

• Situation #3: Introduce new non-terminals that spread longer sequences 
over multiple rules

• A → B C D could be replaced with A → B X1 and X1 → C D

Original CNF

S → NP VP S → NP VP

S → AdjP NP VP S → X1 VP

X1 → AdjP NP

S → VP S → book | include | 
prefer



CKY Algorithm
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• With the grammar in CNF, each non-terminal node above the POS 
level of the parse tree will have exactly two children

• Thus, a two-dimensional matrix can be used to encode the tree 
structure

• Each cell [i,j] contains a set of non-terminals that represent all 
constituents spanning positions i through j of the input

• Cell that represents the entire input resides in position [0,n]



CKY Algorithm

• Non-terminal entries: For each constituent [i,j], there is a position, k, 
where the constituent can be split into two parts such that i < k < j

• [i,k] must lie to the left of [i,j] somewhere along row i, and [k,j] 
must lie beneath it along column j

• To fill in the parse table, we proceed in a bottom-up fashion so when 
we fill a cell [i,j], the cells containing the parts that could contribute to 
this entry have already been filled
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CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

0

1

2

3

4



CKY 
Algorithm: 

Example
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Noun, 
Verb, S, 
Nominal, 

VP

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

0

1

2

3

4



Noun, 
Verb, S, 
Nominal, 

VP

Det

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



Noun, 
Nominal
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2 - flight 3 - through 4 - Chicago

Noun, 
Verb, S, 
Nominal, 

VP

Det

CKY 
Algorithm: 

Example

0 - Book 1 - the

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



Prep.
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3 - through 4 - Chicago

Noun, 
Nominal

2 - flight

Noun, 
Verb, S, 
Nominal, 

VP

Det

CKY 
Algorithm: 

Example

0 - Book 1 - the

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP
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4 - Chicago

Prep.

3 - through

Noun, 
Nominal

2 - flight

Noun, 
Verb, S, 
Nominal, 

VP

Det

CKY 
Algorithm: 

Example

0 - Book 1 - the

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

0

1

2

3

4

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

NP

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



S, VP

NP

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



S, VP

NP

Nominal

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

Nominal

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP

Nominal

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0
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S, VP

NP NP

Nominal

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4 NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP

NP NP

Nominal

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP S, VP1, 
VP2

NP NP

Nominal

PP

CKY 
Algorithm: 

Example
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If we arrive at VP in multiple ways, each way 
is an alternative parse (VP1, VP2, …, VPn).

0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



CKY Algorithm

• In the previous example, we recognized a valid that this sentence 
was valid according to our grammar by finding an S in cell [0,n]

• To return all possible parses, we need to also pair each non-terminal 
with pointers to the table entries from which it was derived

• Then, we can choose a non-terminal and recursively retrieve its 
component constituents from the table

• Complexity of this algorithm:
• Time complexity: O(n3)
• Space complexity: O(n2)
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NP

Prep.

Noun, 
Nominal

Noun, 
Verb, S, 
Nominal, 

VP

Det

S → NP VP
S → book | include | prefer
S → Verb NP
NP → I | she | me
NP → Chicago | Dallas
NP → Det Nominal
Nominal → book | flight | meal | money
Nominal → Nominal Noun
Nominal → Nominal PP
VP → book | include | prefer
VP → Verb NP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer
Preposition → from | to | on | near | through

S, VP S, VP1, 
VP2

NP NP

Nominal

PP

CKY 
Algorithm: 

Example
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0 - Book 1 - the 2 - flight 3 - through 4 - Chicago

0

1

2

3

4



Summary: 
Constituency 
Grammars
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Constituency grammars describe a language’s syntactic structure

Constituents, a core component of constituency grammars, are 
groups of words that function as a single unit

There are many ways to represent constituency grammars, but the 
most common way is by using trees 

Constituency grammars can generate any sentences belonging to 
their language using (potentially recursive) combinations of 
production rules

Syntactic parsing is a way to automatically describe the structure 
of an input sentence according to a constituency grammar

Syntactic parsing can be performed using either a top-down or a 
bottom-up approach

One popular bottom-up approach is the CKY algorithm



This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



Earley 
Parsing

101
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• Top-down dynamic parsing approach
• Table is length n+1, where n is 

equivalent to the number of words
• Table entries contain three types of 

information:
• A single grammar rule
• Information about the progress 

made in completing that rule
• A • within the righthand side of a 

state’s grammar rule indicates the 
progress made towards recognizing it

• The position of the in-progress rule 
with respect to the input

• Represented by two numbers, 
indicating (1) where the state begins, 
and (2) where its dot lies



Example 
States

• Input: Book that flight.
• S → • VP, [0,0]

• Top-down prediction for this particular kind 
of S

• First 0: Constituent predicted by this state 
should begin at the start of the input

• Second 0: Dot lies at the start of the input 
as well

• NP → Det • Nominal, [1,2]
• NP begins at position 1
• Det has been successfully parsed
• Nominal is expected next

• VP → V NP •, [0,3]
• Successful discovery of a tree 

corresponding to a VP that spans the entire 
input
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Earley 
Algorithm

• An Earley parser moves through the n+1 sets 
of states in a chart in order

• At each step, one of three operators is 
applied to each state depending on its status

• Predictor
• Scanner
• Completer

• States can be added to the chart, but are 
never removed

• The algorithm never backtracks
• The presence of S → 𝛼 •, [0,n] indicates a 

successful parse
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Earley 
Operators: 
Predictor

N
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S → • 
VP, [0,0]

VP → • Verb, [0,0]
VP → • Verb NP, [0,0]
VP → • Verb NP PP, [0,0]
VP → • Verb PP, [0,0]
VP → • VP PP, [0,0]

Predictor

Creates new states
Applied to any state that has a non-terminal 
non-POS immediately to the right of its dot
New states are placed into the same chart 
entry as the generating state
They begin and end at the same point in the 
input where the generating state ends



Earley 
Operators: 
Scanner

105
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• Used when a state has a 
POS category to the right of 
the dot

• Examines input and (if 
relevant) adds a state 
predicting a word with a 
particular POS into the chart

• VP → • Verb NP, [0,0]
• Since category following 

the dot is a part of 
speech (Verb)….

• Verb → book •, [0,1]



Earley 
Operators: 
Completer

• Applied to a state when its dot has reached the 
right end of the rule

• Indicates that the parser has successfully 
discovered a grammatical category over some 
span of input

• Finds all previously created states that were 
searching for this grammatical category, and 
creates new states that are copies with their 
dots advanced past the grammatical category

• NP → Det Nominal •, [1,3]
• What incomplete states end at position 1 

and expect an NP?
• VP → Verb • NP, [0,1]
• VP → Verb • NP PP, [0,1]
• So, add VP → Verb NP •, [0,3] and the new 

incomplete VP → Verb NP • PP, [0,3] to the 
chart

Natalie Parde - UIC CS 421 106



Earley 
Algorithm: 
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor
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S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

• Book that flight.



Earley 
Algorithm: 
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

Natalie Parde - UIC CS 421 108

S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

Book • that flight.



Earley 
Algorithm: 
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor
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S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

Book that • flight.



Earley 
Algorithm: 
Example

Chart State Rule Start, End Added By
0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer

3 S16 NP → Det Nominal • 1, 3 Completer

3 S17 VP → Verb NP • 0, 3 Completer

3 S18 S → VP • 0, 3 Completer
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S → NP VP
S → VP
NP → Det Nominal
Nominal → Noun
VP → Verb
VP → Verb NP

Det → that | this | a | the
Noun → book | flight | meal | money
Verb → book | include | prefer

Book that flight. • 



Which 
states 

participate 
in the final 

parse?

Chart State Rule Start, End Added By

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer

3 S16 NP → Det Nominal • 1, 3 Completer

3 S17 VP → Verb NP • 0, 3 Completer

3 S18 S → VP • 0, 3 Completer 111



Which states 
participate in 

the final 
parse?

Chart State Rule Start, End Added By (Backward Pointer)

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer (S14)

3 S16 NP → Det Nominal • 1, 3 Completer (S11, S15)

3 S17 VP → Verb NP • 0, 3 Completer (S6, S16)

3 S18 S → VP • 0, 3 Completer (S17) 112



Successful Final Parse

Natalie Parde - UIC CS 421
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S

VP

Verb NP

Det Nominal

Noun

book

that

flight

Chart State Rule Start, End Added By (Backward Pointer)

0 S0 𝛾 → • S 0, 0 Start State

0 S1 S → • NP VP 0, 0 Predictor

0 S2 S → • VP 0, 0 Predictor

0 S3 NP → • Det Nominal 0, 0 Predictor

0 S4 VP → • Verb 0, 0 Predictor

0 S5 VP → • Verb NP 0, 0 Predictor

1 S6 Verb → book • 0, 1 Scanner

1 S7 VP → Verb • 0, 1 Completer

1 S8 VP → Verb • NP 0, 1 Completer

1 S9 S → VP • 0, 1 Completer

1 S10 NP → • Det Nominal 1, 1 Predictor

2 S11 Det → that • 1, 2 Scanner

2 S12 NP → Det • Nominal 1, 2 Completer

2 S13 Nominal → • Noun 2, 2 Predictor

3 S14 Noun → flight • 2, 3 Scanner

3 S15 Nominal → Noun • 2, 3 Completer (S14)

3 S16 NP → Det Nominal • 1, 3 Completer (S11, S15)

3 S17 VP → Verb NP • 0, 3 Completer (S6, S16)

3 S18 S → VP • 0, 3 Completer (S17)



What if we don’t need a full parse tree?

• Full parse trees can be complex 
and time-consuming to build

• Many NLP tasks don’t require full 
hierarchical parses
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Her new order of computers arrived.

Noun Phrase

Prepositional Phrase

Noun Phrase

Verb Phrase



Easier 
solution?

• Partial parsing, or shallow parsing
• How to generate a partial parse?

• Chunking
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S

NP VP

NP PP Verb

Prep Adj. Noun Prep Noun

Her new shipment of computers arrived

[Her new shipment]NP [of]PP [computers]NP [arrived]VP



Chunking: Fundamental Tasks
Natalie Parde - UIC CS 421 116

Segmentation: Identify the non-overlapping, fundamental 
phrases

[Her new order] [of] [computers] [arrived]

Labeling: Assign labels to those phrases

[Her new order]NP [of]PP [computers]NP [arrived]VP



What is, and is not, a chunk?

• Non-recursive span of text
• When chunking phrases that 

would otherwise be parsed 
recursively:

• Keep head word
• Keep all material belonging to 

constituent that occurs before 
the head word
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[Her new shipment of computers]NP [arrived]VP

[Her new shipment]NP [of]PP [computers]NP [arrived]VP



How do we segment 
text into spans?

• IOB tagging
• I: Tokens inside a span
• O: Tokens outside any span
• B: Tokens beginning a span
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Task: IOB Tagging (All Constituent 
Types)
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Her new order of computers arrived.

B_NP

I_NP

I_NP

B_PP

B_NP

B_VP



Task: IOB Tagging (Noun Phrases)
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Her new order of computers arrived.

B_NP

I_NP

I_NP

O

B_NP

O



How do we 
evaluate 
chunking 
systems?

• Standard text classification metrics, 
comparing predictions with a gold 
standard

• Precision
• Recall
• F-measure
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This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



How can we resolve some of 
the parsing ambiguities 
we’ve observed?

• Probabilistic Context-Free Grammars: Can be used to 
determine which parse out of multiple valid parses should be 
selected, based on how likely the parse tree is to occur in a 
large corpus

• Same core components as regular CFGs:
• A set of non-terminals, N
• A set of terminal symbols, Σ
• A set of rules or productions, R
• A designated start symbol, S

• Each rule in R is of the form A → β, where A is a non-
terminal and β is a string of symbols from the set Σ ∪ 𝑁
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How do 
PCFGs 
differ from 
CFGs?

• R is augmented with a probability, [p], 
learned from a corpus

• The sum of all probabilities for a given 
non-terminal is 1.0

• For example, if the following three 
expansions for S were possible, they 
might have the probabilities:

• S → NP VP [0.80]
• S → Aux NP VP [0.15]
• S → VP [0.05]
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Probabilistic 
Context-
Free 
Grammars

• The probability of sentence S having a parse 
tree T is the product of the individual 
probabilities associated with its constituent 
rules

• 𝑃 𝑇, 𝑆 = ∏!"#
$ 𝑃(𝛽!|𝐴!)

• To disambiguate between multiple valid 
parses, we find the parse tree T that results in 
the highest probability for the sentence S

• ⏞𝑇 𝑆 = argmax
%	'.).	*"yield(%)

𝑃(𝑇)

• We can compute the probabilities for our 
parse trees by extending the parsing 
algorithms we already have
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Case Example: Probabilistic CKY
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0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

Still assume grammar is in 
Chomsky normal form!



Case Example: Probabilistic CKY
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0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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N (0.01)

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 130

N (0.01)

V (0.05)

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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N (0.01)

V (0.05)

Det 
(0.40)

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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N (0.01)

V (0.05)

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

N (0.01)

V (0.05)

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

N (0.01) ☹

V (0.05)

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY

Natalie Parde - UIC CS 421 142

NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

Det 
(0.40)

NP (0.3 * 
0.4 * 0.02 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

Det 
(0.40)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

Det 
(0.40)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

Det 
(0.40)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹

N (0.01) ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹
S (0.8 * 
0.0012 * 

0.000024 = 
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

Det 
(0.40)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹
S (0.8 * 
0.0012 * 

0.000024 = 
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

Det 
(0.40)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹
S (0.8 * 
0.0012 * 

0.000024 = 
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Case Example: Probabilistic CKY
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NP (0.3 * 
0.4 * 0.01 
= 0.0012)

☹ ☹
S (0.8 * 
0.0012 * 

0.000024 = 
2.304*10-8)

N (0.01) ☹ ☹ ☹

V (0.05) ☹

Det 
(0.40)

N (0.02) 

Det 
(0.40)

0 - The 1 - price 2 - includes 3 - a

0

1

2

3

4

4 - computer

The price includes a computer

Production Rule Probability
S → NP VP 0.80
NP → Det N 0.30
VP → V NP 0.20
V → includes 0.05
Det → the 0.40
Det → a 0.40
N → price 0.01
N → computer 0.02

VP (0.2 * 
0.05 * 

0.0024 = 
0.000024)

NP (0.3 * 
0.4 * 0.01 
= 0.0024)



Where did 
these 
probabilities 
come from?

• Often, a corpus
• 𝑃 𝛼 → 𝛽 𝛼 = !"#$%('→))

∑" !"#$%('→,)
= !"#$%('→))

!"#$%(')

• Or, if we don’t have a labeled corpus, we 
can apply a generalization of the forward-
backward algorithm called the inside-out 
algorithm
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Challenges 
Associated 
with PCFGs

• PCFGs solve many issues associated with 
resolving ambiguities, but they still have:

• Poor independence assumptions, which may 
make it difficult to model important structural 
dependencies in the parse tree

• Lack of lexical conditioning, which may allow 
lexical dependency issues (e.g., those 
dealing with preposition attachment or other 
syntactic properties) to arise

• More sophisticated techniques are needed, such 
as:

• Adding extra constraints to rules by splitting 
them based on their parents or their syntactic 
positions

• Using slightly different grammatical paradigms, 
such as probabilistic lexicalized CFGs
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This 
Week’s 
Topics
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Tuesday

Context-Free Grammars
Syntactic Parsing
CKY Algorithm

Thursday

Earley Algorithm
Probabilistic CKY
Lexicalized Grammars



Lexicalized Parsers
• Allow lexicalized rules

• Non-terminals specify lexical heads and associated POS tags
• NP(plants, NNS) → AdjP(purple, JJ) NNS(plants, NNS)
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S(purchased, VBD)

NP(Natalie, NNP)

NNP(Natalie, NNP)

VP(purchased, VBD)

VBD(purchased, VBD) NP(plants, NNS)

AdjP(purple, JJ) NNS(plants, NNS)

JJ(purple, JJ)

Natalie purchased

purple

plants



Lexicalized 
Grammars

• Intuitively, much like having many copies of 
the same production rule

• NP(plants, NNS) → AdjP(purple, JJ) 
NNS(plants, NNS)

• NP(plants, NNS) → AdjP(green, JJ) 
NNS(plants, NNS)

• NP(computers, NNS) → AdjP(purple, JJ) 
NNS(computers, NNS)

• Two types of rules:
• Lexical Rules: Generate a terminal word

• Deterministic
• Internal Rules: Generate a non-terminal 

constituent
• Require estimated probabilities
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Lexical vs. Internal 
Rules
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S(purchased, VBD)

NP(Natalie, NNP)

NNP(Natalie, NNP)

VP(purchased, VBD)

VBD(purchased, VBD) NP(plants, NNS)

AdjP(purple, JJ) NNS(plans, NNS)

JJ(purple, JJ)

Natalie purchased

purple

plants

Internal Rules:
S(purchased, VBD) → NP(Natalie, NNP) VP(purchased, VBD)

Lexical Rules:
JJ(purple, JJ) → purple



The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!
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Non-terminal LHS
NP(plants, NNS)

Non-terminal left of head
AdjP(purple, JJ)

Head
NNS(plants, NNS)

Non-terminal right of head
PP(under, P)

PH: Probability for generating headsPL: Probability for generating 
dependents on the left

PR: Probability for generating 
dependents on the right



The 
Collins 
Parser

• Goal: Use PH, PL, and PR to estimate the 
overall probability for the production rule

• Method:
• Surround the righthand side of the rule with 

STOP non-terminals
• NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, 

NNS) PP(under, IN) STOP
• Compute the individual PH, PL, and PR values for 

the head and the non-terminals to its left and 
right (including STOP non-terminals)

• Multiply these together

166

Grab the purple plants under the bookcase.



The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!
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Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents 
on the left

PR: Probability for generating dependents 
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP



The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!
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Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents 
on the left

PR: Probability for generating dependents 
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))



The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!
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Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents 
on the left

PR: Probability for generating dependents 
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

PL(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

PL(L1|LHS H) = P(AdjP(purple, JJ) | NP(plants, NNS) NNS(plants, NNS))



The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!
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Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents 
on the left

PR: Probability for generating dependents 
on the right

Grab the purple plants under the bookcase.
NP(plants, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

PL(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

PL(L1|LHS H) = P(AdjP(purple, JJ) | NP(plants, NNS) NNS(plants, NNS))

PR(R1|LHS H) = P(PP(under, IN) | NP(plants, NNS) NNS(plants, NNS))

PR(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))



The Collins Parser

• Consider the following generic production rule:
• 𝐿𝐻𝑆 → 𝐿! 	𝐿!"#…𝐿#	𝐻	𝑅#…𝑅!"#	𝑅!
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Non-terminal LHS
NP(plants, NNS) Non-terminal left of head

AdjP(purple, JJ)

Head
NNS(plants, NNS) Non-terminal right of head

PP(under, IN)

PH: Probability for generating headsPL: Probability for generating dependents 
on the left

PR: Probability for generating dependents 
on the right

Grab the purple plants under the bookcase.
NP(facemasks, NNS) → STOP AdjP(purple, JJ) NNS(plants, NNS) PP(under, IN) STOP

PH(H|LHS) = P(NNS(plants, NNS) | NP(plants, NNS))

PL(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))

PL(L1|LHS H) = P(AdjP(purple, JJ) | NP(plants, NNS) NNS(plants, NNS))

PR(R1|LHS H) = P(PP(under, IN) | NP(plants, NNS) NNS(plants, NNS))

PR(STOP|LHS H) = P(STOP | NP(plants, NNS) NNS(plants, NNS))= PH(H|LHS) * PL(STOP|LHS H) * PL(L1|LHS H) * PR(R1|LHS H) * PR(STOP|LHS H)



Estimate the individual probabilities 
using maximum likelihood estimates.
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PR(R1|LHS H) = P(PP(under, IN) | NP(plants, NNS) NNS(plants, NNS))

Count(NP plants, NNS 	𝑤𝑖𝑡ℎ	PP under, IN 	𝑎𝑠	𝑎	𝑐ℎ𝑖𝑙𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑟𝑖𝑔ℎ𝑡)
Count(NP plants, NNS )



Combinatory 
Categorial 
Grammars 
(CCGs)

• Heavily lexicalized approach that groups 
words into categories and defines ways 
that those categories may be combined

• Three major parts:
• Categories
• Lexicon
• Rules
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CCG 
Categories

• Atomic elements
• 𝒜 ⊆ 𝒞, where 𝒜 is a set of atomic 

elements, and 𝒞 is the set of 
categories for the grammar

• Simple noun phrases
• Single-argument functions

• (X/Y), (X\Y)	∈ 𝒞, if X, Y ∈ 𝒞
• (X/Y): Seeks a constituent of type 

Y to the right, and returns X
• (X\Y): Seeks a constituent of type 

Y to the left, and returns X
• Verb phrases, more complex noun 

phrases, etc.
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CCG 
Lexica 
and 
Rules
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• CCG lexica assign CCG categories to words
• Chicago: NP

• Atomic category
• cancel: (S\NP)/NP

• Functional category
• Seeks an NP to the right, returning (S\NP), which 

seeks an NP to the left, returning S

• CCG rules specify how functions and their arguments may be 
combined

• Forward function application: Applies the function to 
its argument on the right, resulting in the specified 
category

• X/Y Y ⇒ X
• Backward function application: Applies the function 

to its argument on the left, resulting in the specified 
category

• Y X\Y ⇒ X
• A coordination rule can also be applied

• X CONJ X ⇒ X



CCG Rules: Example
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Giordano’s serves Chicago

NP (S\NP)/NP NP



CCG Rules: Example
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Giordano’s serves Chicago

NP (S\NP)/NP NP

Forward Application



CCG Rules: Example
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Giordano’s serves Chicago

NP S\NP



CCG Rules: Example
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Giordano’s serves Chicago

NP S\NP

Backward Application



CCG Rules: Example
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Giordano’s serves Chicago

S



CCG 
Operations
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• CCG operations are forward and backward 
compositional

• X/Y Y/Z ⇒ X/Z
• Y\Z X\Y ⇒ X\Z

• Type raising
• Converts atomic categories to functional 

categories, or simple functional categories 
to more complex functional categories

• X ⇒ T/(T\X), where T can be any 
existing atomic or functional category

• X ⇒ T\(T/X)
• Facilitates the creation of intermediate 

elements that do not directly map to 
traditional constituents in the language

• Type raising and function composition can be 
employed together to parse long-range 
dependencies



CCG Parsing 
Frameworks
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• Works okay, but needs to be adapted a bit due to the 
large number of categories available for each word 
(otherwise, lots of unnecessary constituents would be 
added to the table)

• The solution: Supertagging
• Trained using CCG treebanks (e.g., CCGBank)
• Predict allowable category assignments (supertags) for 

each word in a lexicon, given an input context

Probabilistic CKY

• Heuristic search algorithm that finds the lowest-cost path 
to an end state, by exploring the lowest-cost partial 
solution at each iteration until a full solution is identified

• Search states = edges representing completed 
constituents

• Cost is based on the probability of the CCG derivation
• Results in fewer unnecessary constituents being explored 

than probabilistic CKY

A* Algorithm



Evaluating Parsers

• PARSEVAL measures: Seek to determine 
how close a predicted parse is to a gold 
standard parse for the same text, based on 
its individual constituents

• Constituent is correct if it matches a 
constituent in the gold standard in terms 
of its:

• Starting point
• Ending point
• Non-terminal symbol
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Once 
constituent 
correctness 
is defined….

• We can apply the same metrics we use 
for other NLP problems!

• Recall	=
#	correct	constituents	in	predicted	parse
#	constituents	in	gold	standard	parse

• Precision	=
#	correct	constituents	in	predicted	parse

#	constituents	in	predicted	parse
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Summary: 
Statistical 
Constituency 
Parsing

The Earley algorithm is a top-down dynamic 
programming approach for syntactic parsing

We can select the best parse for a sentence using 
probabilistic context-free grammars

The CKY algorithm can be updated to incorporate 
these probabilities for use with PCFG parsing

An alternative parsing paradigm uses lexicalized 
grammar frameworks

We can evaluate parsers using standard NLP 
metrics applied based on the number of correctly 
identified constituents in a predicted parse
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